INGECON SUN Training

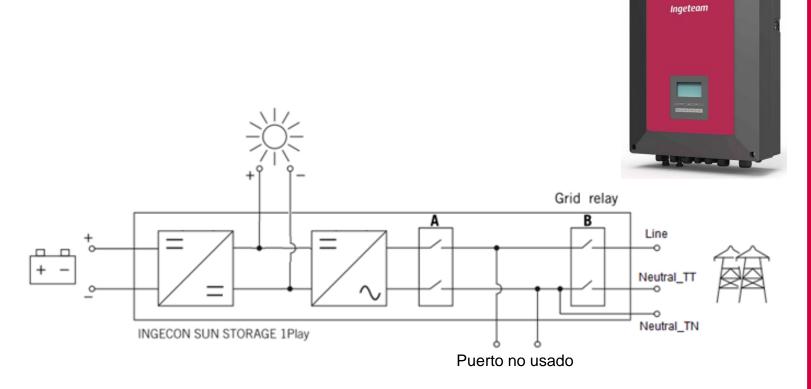
powered by **Ingeteam**

INGECON SUN STORAGE 1Play

AUTOCONSUMO FOTOVOLTAICO CON BATERÍAS Gestionado por INGECON SUN EMS Board

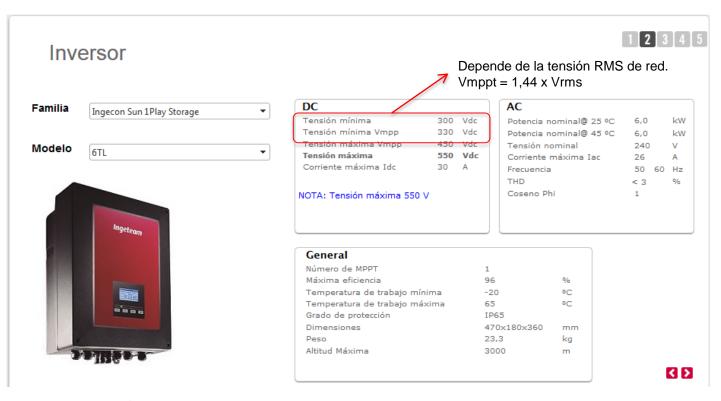
> 14 / Marzo / 2018 Javier Muñoz

INGECON SUN STORAGE 1Play



INDICE:

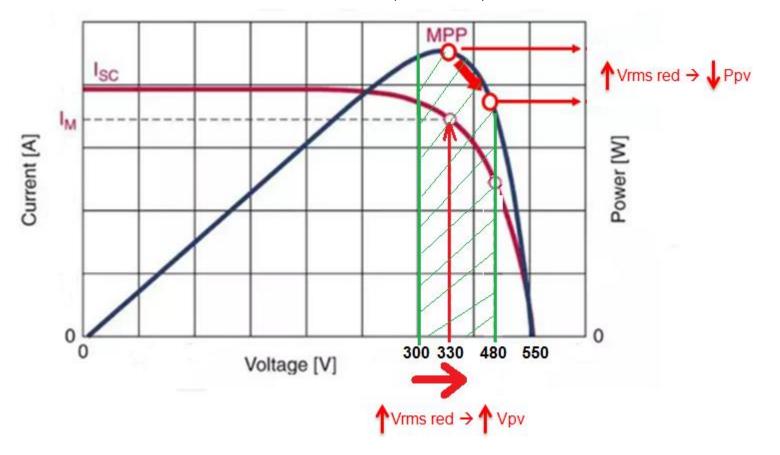
- 1. Descripción del equipo
- 2. Descripción del sistema autoconsumo FV+BAT
- 3. Instalación y esquema eléctrico
- 4. Configuración del sistema
- 5. Carga de firmware
- 6. Solución de problemas



	3TL	6TL	
Potencia nominal (hasta 40 °C)	3 KVA	6 KVA	
Máx. temperatura para potencia nominal	40	0°C	
Máxima corriente de fallo de salida	< 26 A rms (60 ms)	< 40 A rms (60 ms)	
Máxima protección de sobrecorriente de salida	26 A rms	40 A rms	
Entrada sistema de almacenamiento (DC)			Solamente baterías
Rango de tensión con fotovoltaica instalada (1)	40 ~	300 V	compatibles
Rango de tensión sin fotovoltaica instalada (1)	40 ~	450 V	•
Corriente máxima de carga/descarga	5	0 A	
Tipo de baterías	Plomo-ácio	lo (ion-litio (2)	
Comunicación con baterías de ion-litio	CAN I	3us 2.0	
Entrada campo fotovoltaico (DC)			
Potencia máxima campo FV	7,5 kWp	11,5 kWp	Depende de la tensión RMS de re
Rango de tensión MPP (3)	330 🕾	– 480 V	Vmppt = 1,44 x Vrms
Tensión máxima de entrada ^{III}	5.5	io v	יוווס א דד,ר די,רווס
Corriente máxima de entrada	20 A	30 A	
Corriente de cortocircuito máximo	22 A	33 A	
Máxima retroalimentación de corriente de la matriz	O A	rms	
MPPT		1	
Número de strings		2	
Entrada red/generador auxiliar (AC)			
Tensión nominal	23	XO V	
Rango de tensión	172 -	- 264 V	
Frecuencia nominal	50 /	60 Hz	
Rango de frecuencia	40 ~	70 Hz	
Potencia máxima	11.50	00 kVA	
Corriente máxima	50	A rms	
Coseno de Phi	0	~ 1	
Salida red de consumo (AC)			
Modo aislado		-	
Potencia (25 °C) 30 min, 2 min, 3 s ISI	3.500 / 3.900 / 5.080 W	6.400 / 6.900 / 7.900 W	
Corriente máxima	13 A rms	26 A rms	No se usa la funcion Backup e
Tensión nominal (8)	220 -	- 240 V	este tipo de instalaciones.
Frecuencia nominal ¹⁶¹	50/	60 Hz	osto tipo de instalaciones.
Coseno de Phi	-0,8 ~	1 ~ 0,8	
Modo conectado a red/generador auxiliar			
Corriente máxima	50 /	A rms	
Rango de tensión	172 -	- 264 V	
Rango de frecuencia	40 ~	70 Hz	
Coseno de Phi	0.0	1 0,8	
coseno de Fili	-0,9-	1 - 0,0	

Dimensionamiento PV: INGECON SUN PLANNER

- <u>Limitación del rango MPPT</u> → PV conectado directamente al bus DC → afectado por la tensión RMS de la red.
 - Si la tensión de red es < 208Vrms → Vmppt mínimo = 300V
 - Si la tensión de red es > 208Vrms → Vmppt mínimo = 1,44 x Vrms


<u>Ejemplo:</u> Vrms = 240 Vac → **Vmppt mínimio** = 1,44 x 240 = **345,6V**

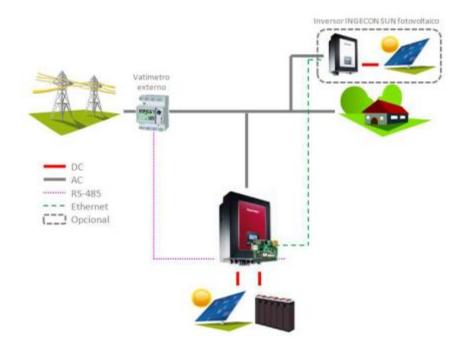
Dimensionamiento PV:

- 1. Límite máximo MPPT → 480V (por hardware)
- 2. Límite mínimo MPPT → dinámico con Vrms red (1,44 x Vrms)

INGECON SUN STORAGE 1Play

INDICE:

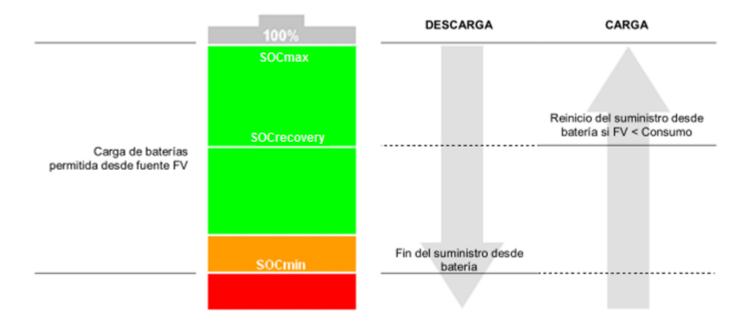
- 1. Descripción del equipo
- 2. Descripción del sistema autoconsumo FV+BAT
- 3. Instalación y esquema eléctrico
- 4. Configuración del sistema
- 5. Carga de firmware
- 6. Solución de problemas



2. DESCRIPCIÓN DEL SISTEMA Autoconsumo FV + BAT

<u>Objetivo</u>: Minimizar el consumo desde la red y aumentar el autoabastecimiento.

Orden de prioridad: 1º Fotovoltaica 2º Baterías 3º Red



2. DESCRIPCIÓN DEL SISTEMA Autoconsumo FV + BAT

Orden de prioridad: 1º Fotovoltaica

2º Baterías

3º Red

03:00

04:30

06:00 07:30

09:00

10:30 12:00

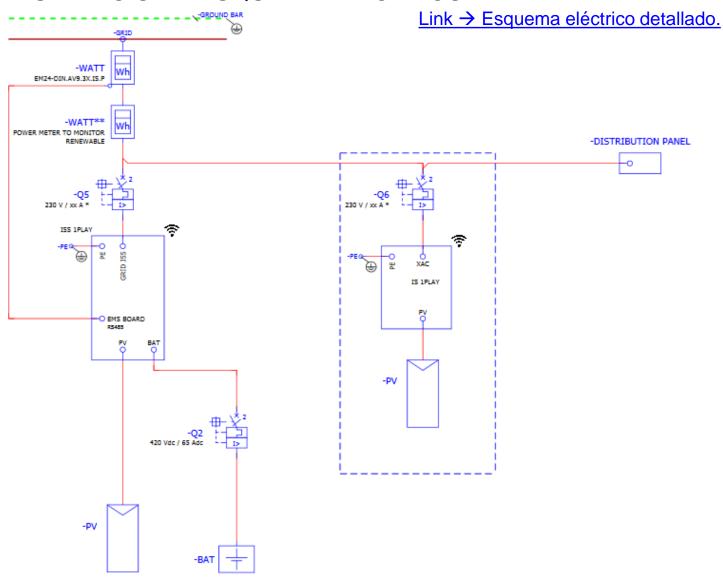
2. DESCRIPCIÓN DEL SISTEMA PV Generation: 663W SetPoint: 3715W _Lite Node:1 05M132100A01 Watt Node:4 **EMS** W(R): 14W W(S): 0W W(T): 0W SOCmax OR Vbatt charge SOCmax Power: -210W PV Generation: 0W Batt. Charge: 178W SetPoint: -196W VBat: 51V 2.560 Status: OnGrid 1.920 SOCmin OR Vbatt_discharge SOCrecovery SOCmin SOC Direct PV Consum. Battery Charge from PV Battery Charge from Grid

Battery Discharge Public Grid

Grid feed-in

INDICE:

1. Descripción del equipo



2. Descripción del sistema autoconsumo FV+BAT

- 3. Instalación y esquema eléctrico
- 4. Configuración del sistema
- 5. Carga de firmware
- 6. Solución de problemas

INGECON SUN STORAGE 1Play

3. INSTALACION Y ESQUEMA ELÉCTRICO

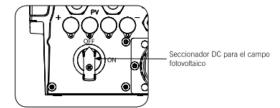
- 1. BATERÍAS
- 2. PV
- 3. RED PUBLICA
- 4. INGECON SUN EMS BOARD
- 5. VATÍMETRO CARLO GAVAZZI

1. Baterías:

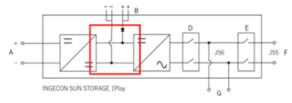
No se permite aterrar ningún polo de la batería.

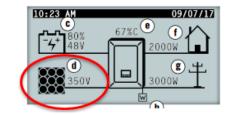
Características	PLOMO - ÁCIDO	ION - LITIO
Protección DC	Necesario	Opcional
Longitud cableado	< 1,5m	< 1,5m
Sensor Temperatura	Opcional	
Comunicación BMS		Modelos Compatibles

	INGECON SUN STORAGE 1Play Hasta 32 A Hasta 40 A Hasta 50 A			
Sección cableado	4 mm ²	6 mm ²	10 mm ²	

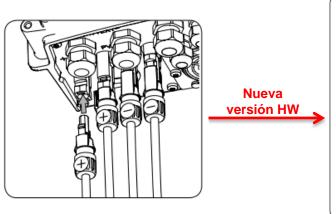


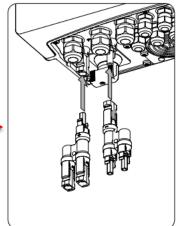
2. PV:

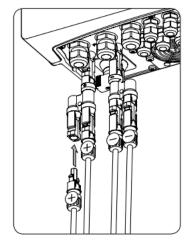



No se permite aterrar ningún polo del campo PV

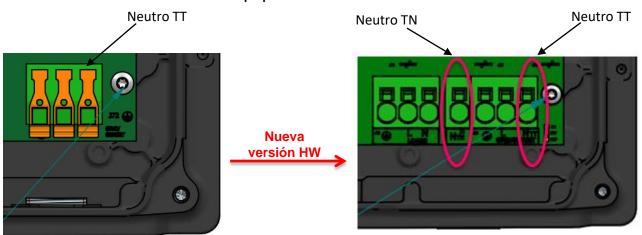
De serie incorpora un seccionador DC.




Sin PV, la tensión es la del bus DC.



Nueva versión Hardware

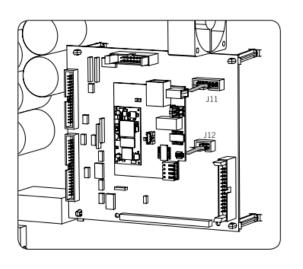


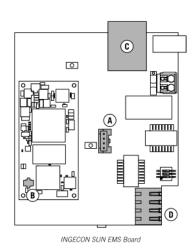
3. Red pública:

- Protección magneto-térmica.
- Longitud y sección del cableado adecuado.
 <u>Objetivo</u>: Disminuir caídas de tensión en el cable y evitar desconexiones del equipo por tensión de red baja o alta (absorción/inyección).

	INGECON SUN STORAGE 1 Play			
	Hasta 32 A Hasta 40 A Ha			
Sección cableado	4 mm ²	6 mm ²	10 mm ²	

 Identificar el sistema de puesta a tierra TT o TN de la red. Conexión correcta del neutro en el equipo.



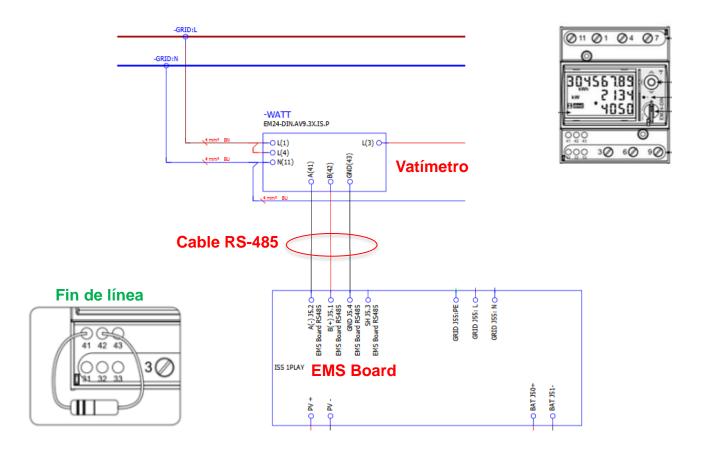


4. INGECON SUN EMS Board:

Instalación en el interior del Storage 1Play.

Conectar mediante un cable Ethernet / Wi-Fi al router (DHCP).

Conectar el cableado RS-485 (D) para la comunicación con el vatímetro externo.


Pin	Señal		
1	RS-485 B(+)		
2	RS-485 A(-)		
3	Malla de protección		
4	GND		

5. Vatímetro Carlo Gavazzi:

- Objetivo: Medir la diferencia entre el consumo total y la generación renovable.
- Conectar la comunicación RS-485 entre la EMS Board y el vatímetro.

INDICE:

1. Descripción del equipo

2. Descripción del sistema autoconsumo FV+BAT

3. Instalación y esquema eléctrico

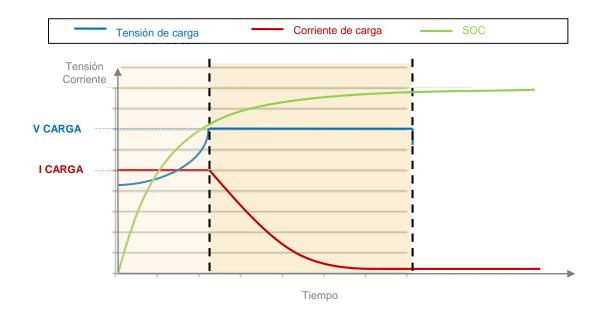
- 4. Configuración del sistema
- 5. Carga de firmware
- 6. Solución de problemas

1. INGECON SUN STORAGE 1Play:

- Tipo de Batería (parámetros)
- Nodo Modbus
- Tipo de Red (parámetros)
- Modo Operación (parámetros)
- Función Back-up
- Inyección a Red desde PV

2. INGECON SUN EMS Board (EMS Tools):

- Nueva planta
- Estrategia
- Agregar dispositivos


1. INGECON SUN STORAGE 1Play:

Las configuraciones deben ser realizadas por el instalador. La contraseña de instalador es **0 3 3 2**.

Tipo de Batería → ion-litio

- Seleccionar el modelo de <u>batería compatible</u>.
- Los parámetros de carga/descarga están predefinidos por el BMS.
- Documento exclusivo para configurar una <u>LG RESU</u>.

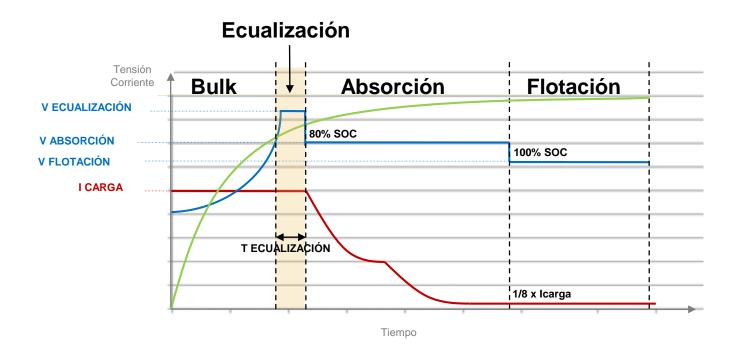
<u>Tipo de Batería</u>: *Plomo-Ácido*

Una errónea configuración de estos parámetros puede reducir la vida de las baterías.

Parámetro	Descripción	Ejemplo
V NOMINAL	Tensión total del banco de baterías (V)	6 baterías en serie de 12V V NOMINAL = 6 x 12V = 72 V
V MINIMA	Tensión mínima para evitar descargas profundas del banco de baterías (V)	6 baterías en serie de 10,8V (1,8V/cell) V MINIMA = 64 V
C20	Capacidad en 20h	C20 = corriente descarga @ 20h @ 1,8V/cell C20 = 8,75 A x 20h = 175 Ah
C5	Capacidad en 5h	C5 = corriente descarga @ 5h @ 1,8V/cell C5 = 30,3 A x 5h = 151 Ah

Discharge in A at 20°C

	Vpc	5 Min	10 min	15 min	20 min	30 min	45 min	1 h	2 h	3 h	4 h	5h	8 h	10 h	20 h
[1.90	181	172	161	152	128	103	88.6	56.5	40.8	32.4	27.4	18.0	14.7	7.76
	1.87	211	202	186	171	144	114	94.9	60.0	43.0	34.0	28.8	18.9	15.5	8.19
	1.85	240	221	199	179	152	118	98.8	61.8	44.2	34.9	29.4	19.3	15.9	8.39
[1.83	265	241	215	189	158	122	101	63.1	45.1	35.5	29.9	19.7	16.1	8.38
	1.80	289	261	229	202	164	127	104	64.7	46.1	36.2	30.3	20.0	16.5	8.75


Parámetro	Descripción	Ejemplo
I CARGA	Máxima corriente de carga del banco de baterías (A)	Se recomienda una 20% de C20 I CARGA = 20% x 175 Ah = 35 A
I DESCARGA	Máxima corriente de descarga del banco de baterías (A)	Para un régimen de descarga de 5h @1,8V/cell, sería de 30A
V ABSORCIÓN	Tensión de carga del banco de baterías (V)	Se recomienda un 120% de la tensión nominal @25ºC V ABS. = 120% x 72V = 86 V
V FLOTACIÓN	Tensión de flotación del banco de baterías (V)	Se recomienda un 113% de la tensión nominal @25ºC V FLOT. = 110% x 72V = 79 V
V ECUALIZCIÓN	Tensión de ecualización del banco de baterías (V)	Se recomienda un 130% de la tensión nominal @25ºC V ECU. = 130% x 72V = 94V
T ECUALIZACIÓN	Duración de la carga de ecualización del banco de baterías (min)	Se recomienda realizar la ecualización durante 2h o 3h cada 60 o 120 días dependiendo del uso del sistema.
СОМР. ТЕМР.	Temperatura de compensación de una celda (-mV/ºC/cell)	4mV/ºC/Cell para una celda de 2V de la batería de 12V @25ºC

	Temperature / V	olts per cell	Example: 12V (6 cells)
	0°C to 16°C	2.5 Volt	15.0 Volts
Bulk/Absorption	17°C to 27°C	2.4 Volt	14.4 Volts
	28°C to 40°C	2.36 Volt	14.16 Volts
Float	2.19		13.14 Volts
equalización	2.58-2.	67	15.48-16.02 Volts

<u>Número de Nodo Modbus:</u> La comunicación del inversor con la EMS Board se realiza a través de la comunicación RS-485, por lo que es necesario configurar el nodo modbus **2**.

Menú > Configuración > Cambiar Nodo Modbus

Tipo de instalación AC:

Identificar correctamente el sistema de puesta a tierra TT o TN de la instalación antes de proceder con la configuración.

Parámetro	Descripción	Ejemplo
RED / GENERADOR	Tipo de red AC utilizada	Para autoconsumo es tipo RED
PAIS / NORMATIVA	Normativa y país en el que se ha instalado el equipo	España / RD+UNE206007
SISTEMA TT / TN	Régimen de neutro de la red	Para España es el sistema TT
TENSION RMS	Tensión nominal de la red (V)	Para España es 230Vac
FRECUENCIA	Frecuencia nominal de la red (Hz)	Para España es 50Hz

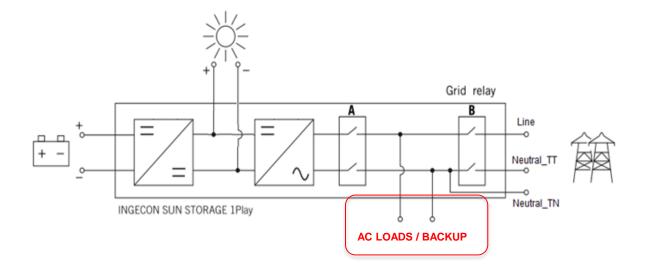
Ciertos parámetros de la normativa seleccionada son reajustados en función de la tensión y frecuencia nominal configurada. *Ejemplo: limites V/F de conexión y desconexión con la red.*

Modo de Operación: Soporte de Red

Menú > Configuración > Modo Operación > Modo > Soporte de Red

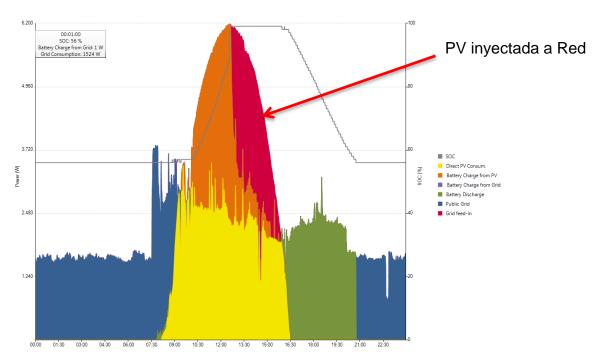
Al ser una estrategia gestionada por el EMS Board, los parámetros que prevalecen son los configurados a través del EMS Tools.

Aún así se recomienda configurar en el inversor los siguientes parámetros:


Parámetro	Descripción	Ejemplo
SOC MAX	SOC máximo para limitar la carga de las baterías (%)	Se recomienda un 100%.
SOC RED (SOC GRID)	Valor informativo, no se utiliza para "Soporte de Red".	
SOC MIN	SOC mínimo para limitar la descarga de las baterías (%)	Se recomienda un 60% para Plomo. Para litio depende del fabricante.
SOC RECX	Uso para off-grid / Backup	Configurar valores inferiores a SOC MIN para evitar alarmas de
SOC DESCX	Oso para on-gnu / Backup	batería baja.
POTENCIA CARGA	Valor informativo, no se utiliza para "Soporte de Red".	

<u>Función Respaldo o Back-up</u>: Ante una caída de la red, el Storage 1Play genera una red en el puerto AC LOADS / BACKUP.

En <u>SOPORTE DE RED</u> esta funcionalidad se deshabilita para no usar las baterías cuando la red no está presente.



<u>Potencia PV inyectada a Red</u>: Es posible inyectar a red la potencia PV sobrante, siempre y cuando la normativa lo permita.

Para las instalaciones de autoconsumo fotovoltaico con almacenamiento gestionadas con el INGECON SUN EMS Board de acuerdo al RD900/2015, este parámetro debe ser configurado a OW.

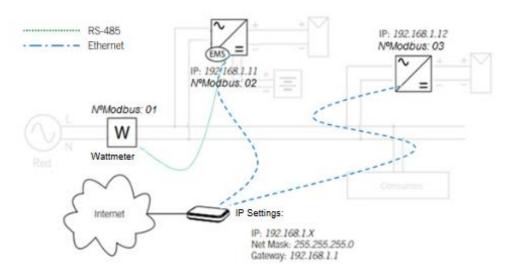
Este parámetro puede ser configurado desde el inversor o desde el EMS Tools. Prevaleciendo el valor establecido en el EMS Tools.

1. INGECON SUN STORAGE 1Play:

- Tipo de Batería (parámetros)
- Nodo Modbus
- Tipo de Red (parámetros)
- Modo Operación (parámetros)
- Función Back-up
- Inyección a Red desde PV

2. INGECON SUN EMS Board (EMS Tools):

- Nueva planta
- Estrategia
- Agregar dispositivos
- Parámetros estrategia
- Inyección a Red desde PV



2. INGECON SUN EMS Board:

• Conectar la EMS Board mediante Ethernet / Wi-Fi al router (DHCP).

Ejemplo: Comunicación Ethernet

Dispositivo	Comunicación	Nodo Modbus
EMS	IP: 192.168.1.11	
Vatímetro	RS-485	01
ISS 1Play	RS-485 (interno)	02
Inversor fotovoltaico	IP: 192.168.1.12	03

Nueva Planta: "Numero de Serie" y "Contraseña".

Ejemplo:

Las configuraciones deben ser realizadas por el instalador. La contraseña de instalador es "access ingeconinstaller".

Estrategia: SELF-CONSUMPTION WITH STORAGE

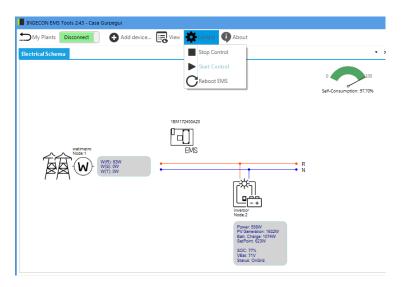
Al ser una estrategia gestionada por el EMS Board, los parámetros que prevalecen son los configurados a través del EMS Tools.

Agregar dispositivos:

Añadimos ISS 1Play

- 1. Barra de control > Add device
- 2. Desde la ventana emergente en Device Type seleccionamos el tipo: PV/Battery Inverter.

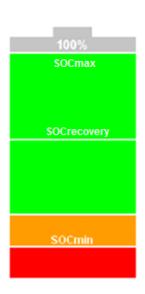
- Seleccionamos el tipo de conexión: RS485.
- Nodo Modbus: 02Alias: ISS 1Play
- Fase: R
- 3. Pulsamos en *Find*. Si el equipo se encuentra bien conectado y configurado se mostrará un aviso con el número de serie y el firmware del dispositivo.

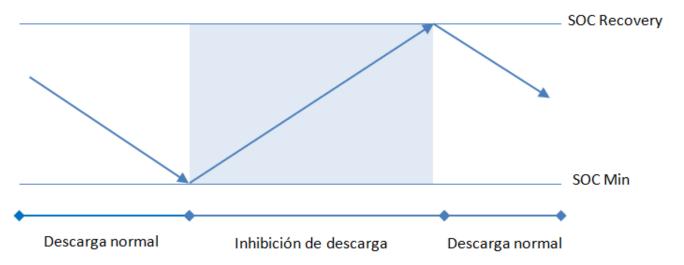


Añadimos Vatímetro Externo

- Barra de control > Add device
- 2. Desde la ventana emergente en Device Type seleccionamos el tipo: Power Meter.

- Seleccionamos el tipo de conexión: RS485.
- Nodo Modbus: 01
 Alias: Wattmeter
- Pulsamos en Find. Si el vatímetro se encuentra bien conectado y configurado se mostrará un aviso con el número de serie y el firmware del dispositivo.
- 4. Por último, guardar la configuración pulsando en Save.
- Guardar configuración → Start Control

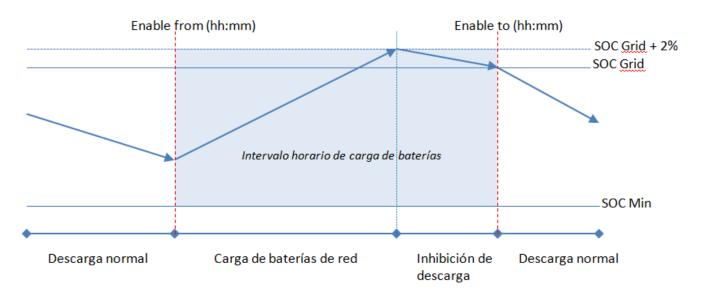




Parámetros estrategia:

Battery SOC Levels:

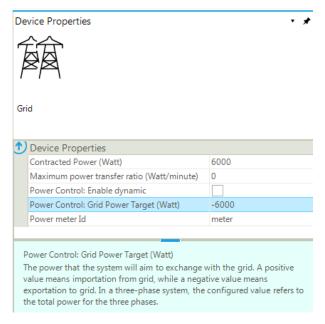
Parámetro	Descripción	Valores por defecto
SOC MAX	SOC máximo para limitar la carga de las baterías desde PV (%)	100%
SOC RECOVERY	SOC para reanudar la descarga de la batería una vez alcanzado SOC MIN	60%
SOC MIN	SOC mínimo para limitar la descarga de las baterías (%)	55%



Parámetros estrategia:

Carga de baterías desde Red programada:

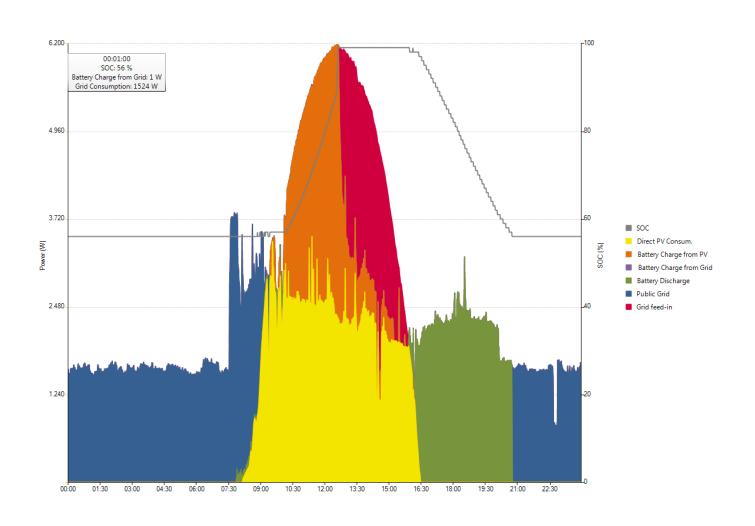
Parámetro	Descripción	Valores por defecto
Enable from (hh:mm)	Inicio de la carga de baterías desde la red (hh:mm)	
Enable to (hh:mm)	Fin de la carga de baterías desde la red (hh:mm)	
SOC GRID	SOC máximo para cargar las baterías desde la red (%)	0% (+ 2% Histeresis)



<u>Inyección a Red desde PV:</u> Para inyectar el excedente PV a la red se deberá de configurar el parámetro "Grid Power Target" en el apartado:

Para las instalaciones de autoconsumo fotovoltaico con almacenamiento gestionadas con el INGECON SUN EMS Board de acuerdo al RD900/2015, este parámetro debe ser configurado a OW.

El signo del valor introducido tiene el siguiente convenio:


- Si el valor es negativo → inyección a red
- Si el valor es positivo → consumo mínimo desde red

4. CONFIGURACIÓN DEL SISTEMA

Visualización de las gráficas a través del EMS Tools → View > Data/Graphs

4. CONFIGURACIÓN DEL SISTEMA

1. INGECON SUN STORAGE 1Play:

- Tipo de Batería (parámetros)
- Nodo Modbus
- Tipo de Red (parámetros)
- Modo Operación (parámetros)
- Función Back-up
- Inyección a Red desde PV

2. INGECON SUN EMS Board (EMS Tools):

- Nueva planta
- Estrategia
- Agregar dispositivos
- Parámetros estrategia
- Inyección a Red desde PV

INDICE:

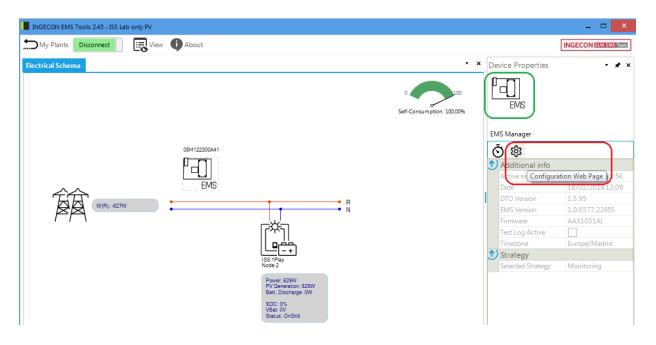
1. Descripción del equipo

2. Descripción del sistema autoconsumo FV+BAT

3. Instalación y esquema eléctrico

4. Configuración del sistema

- 5. Carga de firmware
- 6. Solución de problemas

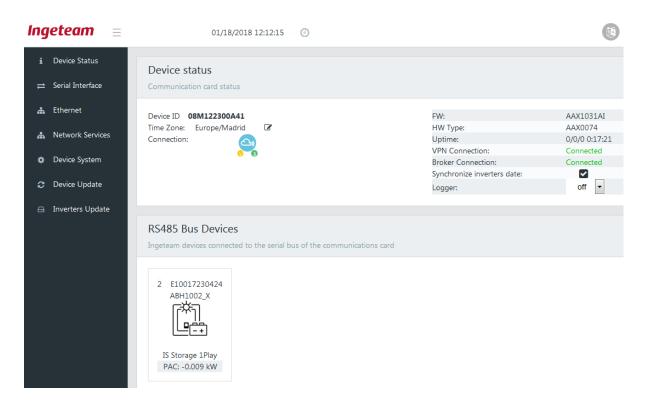


Nuevo Método: A través del dispositivo INGECON SUN EMS Board

- Mayor robustez ante posibles cortes en las comunicaciones entre PC y dispositivos.
- Comprobación automática de las ultimas versiones de firmware disponibles.

Ejemplo:

1. Acceder a la pagina web del EMS Board a través del software EMS Tools.

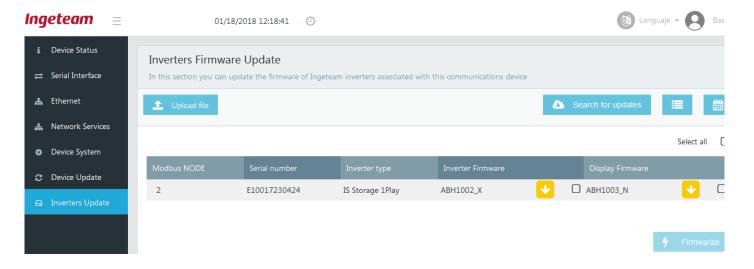


Ejemplo:

2. En la pagina web del EMS Board se muestra el estado actual y los inversores que están comunicados al EMS.

Ejemplo:

3. En el apartado "Device Update" podemos comprobar si existe una nueva versión de firmware del EMS Board, así como actualizar su firmware.



Ejemplo:

4. En el apartado "Inverters Update" podemos comprobar si existe una nueva versión de firmware de los inversores, en este caso del Storage 1Play, así como actualizar su firmware.

INDICE:

1. Descripción del equipo

2. Descripción del sistema autoconsumo FV+BAT

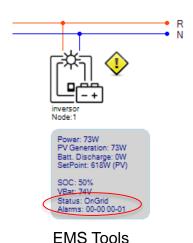
3. Instalación y esquema eléctrico

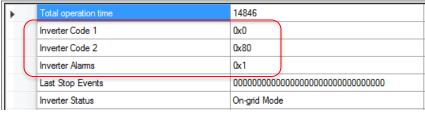
4. Configuración del sistema

5. Carga de firmware

6. Solución de problemas

6. SOLUCIÓN DE PROBLEMAS


<u>Ingecon Sun Storage 1Play</u>:


Consultar la "guía de interpretación de alarmas y troubleshooting" donde se detallan las alarmas y la resolución de problemas que pudieran darse en la instalación.

Las alarmas pueden visualizarse desde el display del inversor o a través de los software: EMS Tools e Ingecon Sun Manager.

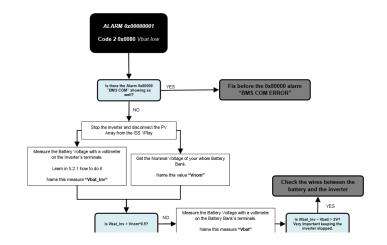
Ejemplo:

1. A través de los software se detecta que el inversor muestra una alarma.

Ingecon Sun Manager

6. SOLUCIÓN DE PROBLEMAS

Ingecon Sun Storage 1Play:


Ejemplo:

2. Con la alarma localizada, Alarma 1 + Code2 80, acceder al troubleshooting:

ALARMS	UNIT OPERATING CODES	STOP EVENT	DESCRIPTION
0x00000001	Code 2: 0x0080	Stop Event: 1	It may be caused by the battery protection. Vbat
Battery voltage out of range	Low battery voltage.	The stop event is active only when the inverter is with this alarm and is not connected to a grid/genset	strategy, SOC <socdescx*. (*)in="" \bat<\bar{o}bat<\bar{o}batdescx\bar{o}.<="" acid="" condition="" estimation="" is="" lead="" not="" phase="" so="" soc="" systems="" th="" the="" there="" three=""></socdescx*.>
		This is because the battery is the only energy source available to feed the loads, but it is already to the minimum so the inverter must stop.	The alarm will be active until Vbat>\vbatmin and SOC>SOCrecx**. (**)In lead acid three phase systems there is not SOC estimation so the condition is \vbat>\vbatrecx).

Diagrama de flujo correspondiente a cada alarma.

4.1 Alarm 0x00000001, Code 2 0x0080: Stop Event 1 Vbat Low

DOCUMENTACION:

Link → <u>Training Storage 1Play</u>

PRE-VENTA:

- Manual de Instalación y uso.
- Datasheet
- Guía técnica para instalaciones con ISS 1Play
- List of approved Li-ion batteries

PUESTA EN MARCHA:

- Use of LG Chem's RESU batteries
- Instalación y configuración de un sistema de autoconsumo fotovoltaico con baterías
- Esquema detallado : Sistemas con régimen de neutro TT

POSTVENTA:

- Guía de interpretación de alarmas y troubleshooting
- Preguntas frecuentes (FAQ)

Gracias por su atención.

Ingeteam

READY FOR YOUR CHALLENGES

